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1. Introduction to the DSS  

Eighteen statistical distributions are available in HYFRAN-PLUS software to fit data sets that are 

independent, homogenous and stationary. A Decision Support System (DSS) is developed to help to the 

selection of the most appropriate class of distributions, with respect to extreme values. Distributions that 

are usually used in flood frequency analysis can be grouped in three categories that contain the ten 

distributions that are widely used in hydrology to represent maximum annual flow series: 

 

- Class C (regularly varying distributions): Fréchet (EV2), Halphen IB (HIB), Log-Pearson (LP3), 

Inverse Gamma (IG). 

- Class D (sub-exponential distributions): Halphen type A (HA), Halphen type B (HB), Gumbel 

(EV1), Pearson type III (PIII), Gamma (G). 

- Class E (Exponential distribution).  

 

Figure 1 presents exponential (E), sub-exponential (D) and regularly varying (C) distributions. 

Distributions are ordered from light tailed (from the left) to heavy tailed (to the right). The limiting cases 

(bottom squares) represented by distributions in the limits of classes. The tail of the class C distributions 

is heavier than that of the class D distributions, which is heavier than that of the class E. Thus, estimated 

quantiles can be ordered equivalently. Indeed, for a given sample, the T-event corresponds to the quantile 

of the probability of non-exceedance Tp 11−=  estimated by distributions of the classes C, D and E, are 

QT (C), QT (D) and QT (E) respectively, which verify the following relation: QT (E) < QT (D) < QT (C). 
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The Lognormal distribution (LN) doesn’t belong to any of these classes. It has an asymptotic behaviour 

which is in the frontier of the classes C and D. Indeed, the LN tail is lighter (respectively, heavier) than 

that of a distribution of the class C (respectively, class D). Thus, the quantiles (QT) estimated by a 

distribution belonging to the classes C, D and the LN, verify the following relation: 

 QT ( D ) < QT (LN) < QT ( C ) (Figure 1). Consequently: 

- If the true distribution is regularly varying (class C), and the LN distribution is considered for the 

fit, there a risk to underestimate the quantiles; 

- If the true distribution is sub-exponential (class D), and the LN distribution is considered for the 

fit, there a risk to overestimate the quantiles. 

 

In the last version of the DSS, and to have a safe choice, LN is considered by default as a distribution of 

the class D. In the present version, a new step is added to the DSS in order to test Lognormality before the 

adequacy of the classes C or D.  

 

 

Figure 1: distributions ordered with respect to their right tails (El Adlouni et al., 2008). 

 

 

The methods developed in the DSS allow the identification of the most adequate class of distribution to 

fit a given sample, especially for extremes. These methods are (cf. Diagram):  

- Log-normality test : Use the (Cv,Cs) diagram and then the Jarque-Bera test if it is recommended; 

- The Log-Log plot : used to discriminate between on the one hand the class C and on the other 

hand the classes E and D; 

- The mean excess function (MEF) to discriminate between the classes D and E; and  

- Two statistics: Hill's ratio and modified Jackson statistic, for confirmatory analysis of the 

conclusions suggested by the previous two methods. 
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Figure 2: Diagram for class discrimination used in the DSS 

 

More theoretical details of this classification and the criteria are available in El Adlouni et al. (2008) and 

Martel et al. (2011). These articles are available as attachment in the HYFRAN-PLUS setup. 
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2. Log-normality test 

2.1. The (Cv,Cs) diagram 

To test the log-normality, tests of normality are applied to the logarithmic transformation Y of the initial 

data (Y = Log (X), where X is the original variable). Recent work has been done by Martel, El Adlouni 

and Bobée (2011), to define a procedure based on one or more tests to discriminate between the Log-

normale distribution and  the classes C and D. Five tests (Anderson-Darling (AD), Shapiro-Wilk (SW), 

Lilliefors (Lf), Jarque-Bera (JB) and Filliben (FB)) were compared by simulation to examine their 

powers. Note that the five tests used to test normality, were used on the series transformed by the 

logarithmic function. Martel, El Adlouni and Bobée (2011) [Article available as an attached file when 

installing HYFRAN-PLUS] showed that when the series has examined some characteristics (represented 

by coefficients of variation Cv and skewness Cs) the test of Jarque-Bera (JB) has a satisfactory power to 

test the log-normality, when the alternative is a distribution of the class C or D. Indeed, if the coefficients 

of skewness and variation of the studied series are in the area corresponding to the Inverse Halphen type 

B (HIB)  of the diagram (Cv,Cs) (Figure 3), the power of the JB test is very satisfactory and its use is 

recommended in the DSS. 

 

 
Figure 3 : The HIB region in the (Cv,Cs) diagram 
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We therefore propose as a first step in the DSS, the use of the (Cv, Cs)-diagram and the JB test. The parts 

of this step are summarized by the following algorithm: 

1. Compute the Cv and Cs of the sample [Step 1]; 

2. If the point (Cv,Cs) belongs to the Halphen Inverse B (HIB) [Step 2] (Figure 3): Apply the JB test 

on the transformed sample (using the logarithmic function) to test normality. 

3. If the Log-normality is accepted at significance level of 5%, the Log-normal distribution is 

recommended to fit the dataset [Step 3]. 

4. If the log-normality hypothesis (normality of the transformed data) is rejected, at significance 

level 5%, use the Lo-log diagram (Section 3) [Step 4]. 

5.  If the sample does not belong to the zone HIB: we do not consider the LN distribution to fit the 

data and suggest the of the Log-log diagram (Section 3) [Step 5]. 

2.2. The Jarque-Bera Test [JB; Jarque et Bera, 1980] 

 
The JB test (Jarque and Bera, 1980) uses functions of the 3rd and 4th moments of the sample, which 

correspond to the coefficients of skewness (Cs) and kurtosis (Ck). In the case of a normal distribution 

N(.;.), these coefficients are respectively equal to 0 and 3. JB test combines these two factors into a single 

statistic: 

2 21 1
JB ( ) ( 3)

6 24
N Cs Ck = + − 
 

 

Where N is the sample size, with the condition 7N > . The JB statistic follows a chi-square distribution 

2
2χ , with degrees of freedom 2ν = . It then compares the value the calculated JB statistic from the 

sample to the critical value at significance level of 5%. The decision rule is: 

 

- If 2
2,0.95JB χ< , the H0 hypothesis is  accepted (the transformed series is normal) and therefore we 

accept the log-normality hypothesis[Step 3]; 

- If  
2
2,0.95JB χ>

 the H0 hypothesis is rejected (the transformed series is not normal) and we therefore 

reject the hypothesis of log-normality [Step 4]. 

It should be noted that this is a test and is based on asymptotic result, therefore, generally not very 

effective for small samples ( 30N < ). We decided, as part of DSS, use it for samples, such as coefficients 

Cv, Cs belong to the region HIB. For this region of the (Cv,Cs) diagram, the JB test has an acceptable 
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power even for small sample size (Martel El Adlouni and Bobée, 2011). 

 

3. Log-Log plot  

The log-log plot is based on the fact that the survival function ( ) ( )  F u P X u= > , is given by 

( ) ( ) /  uF u P X u e θ−= > =  for exponential tail with mean θ , and for regularly varying distribution 

with tail index α , F  is equivalent to (for large quantile) : 

( )
1

1
1

1
(    )

1u
u

x
F u P X u C dx C C u

x

α
α

α α

∞− +∞ − + 
= > ≈ = = − 

∫  (with 1α > , which is equivalent to finite mean). 

 

Therefore, taking the logarithm we have regularly varying distributions 

( ) ( ) ( )log log 1 logP X u C uα α> ≈ − −   . This suggests that, for the log-log plot, the tail probability is 

represented by a straight line for power-law (or regularly varying distributions, class C) but not for the 

other sub-exponential or exponential distributions (class D or E).  

 

As illustrated in Figure 4, the curve represented in the Log-Log plot corresponds to a straight line for the 

distributions of the class C i.e. Fréchet (EV2), Halphen type IB (HIB), Log-Pearson type 3 (LP3) and 

Inverse Gamma (IG), but not for sub-exponential or exponential type tails (class D or E). When the 

diagram is not linear we suggest the use of the Mean Excess Function (MEF) to discriminate between the 

classes D and E.  

 

Figure 4: Illustration of the Log-Log plot to characterize the regularly varying distributions  
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To check the linearity of the curve in the log-log diagram, a test on the associated correlation coefficient 

is considered. Simulation studies allow the determination of critical values corresponding to significance 

levels of 5 % and 1 %, to test the HYPOTHESIS H0: THE DATA FOLLOW A DISTRIBUTION OF 

THE CLASS C (i.e. THE CURVE IS LINEAR). These critical values are calculated according to the size 

N of the sample (30 ≤ N ≤ 200). Note that the decisions given by the DSS are based, by default, on the 

significance level 5 %.  

If the hypothesis H0 is rejected, at the significance level 5 %, we suggest the use of the mean excess 

function plot (MEF). However the critical values at the significance level 1 % are given for more 

flexibility and to allow the user to make another decision than that based on the significance level 5 %. 

 

Indeed, if the observed correlation coefficient (ro) is greater than critical value (rc) at the significance 

level 5 %, then we conclude that it is not significantly different from 1 at the significance level 5 % and 

the hypothesis H0 of linearity is accepted at this level (Figure 4). In this case, the most adequate choice 

corresponds to the class C of regularly varying distributions (power-law type) : Halphen type IB (HIB), 

Fréchet (EV2), Log-Pearson type 3 (LP3), Inverse Gamma (IG). 

 

 

Figure 5: Illustration of the one-sided test of the hypothesis H0. 

 

Figure 5 shows, in general, the decision rule for a one-sided test for to two significance levels 1% and 

5%. The critical values corresponding to each significance level are, respectively, rc(1%) and rc(5%). 

These two critical values are obtained by Monte Carlo simulations generated from regularly varying 

distributions. For a given dataset, we calculate the correlation coefficient r0. To illustrate the use of this 
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test, three cases are considered such as the correlation coefficients verify: r0(cas1) <  rc(5%) < r0(cas2) < 

rc(1%) < r0(cas3). The hypothesis H0 (case1) is rejected for the significance levels 1% and 5% . Indeed, 

r0(cas1) < rc(5%) and r0(cas1) < rc(1%). In this case the distribution is not regularly varying (the curve is 

not linear). For case2, the hypothesis H0 is rejected at the significance level 1%, but it is accepted at the 

significance level of 5%. Indeed, r0(cas2) > rc(5%) and r0(cas2) < rc(1%). For this case, the hypothesis 

H0 is accepted by the SAD and the use of regularly varying distribution is suggested (based on the 

significance level 5%). However, the critical value at the significance level of 1% is presented to give 

more flexibility to the user. The case 3, corresponds to the case where r0 is higher than the two critical 

values (r0(cas3) > rc(5%) and r0(cas3) > rc(1%)). In this case, and for the two significance levels, the 

hypothesis H0 is accepted and the suggested distribution belong to the class C of regularly varying 

distributions. 

4. The Mean Excess Function Diagram (MEF)  

The mean excess function method is based on the function ( ) [ ]|e u E X u X u= − > . This function is 

constant for exponential tail distributions (( )e u θ= ). However, in the case of regularly varying 

distribution with tail index α ( )2α > : ( ) ( )2

u
e u

α
=

−
. The Mean Excess Function (MEF) allows 

discriminating between the class D (sub-exponential distributions) and the class E (Exponential 

distribution). Indeed, the curve presented in the MEF diagram is linear for high observed values for 

distributions of both classes D and E. If in addition the slope of this curve is (Figure 6): 

- Equal to zero, the most adequate distribution belongs to the class E (Exponential law); 

- Strictly positive, the most adequate distribution belongs to the class D of sub-exponential 

distributions: Halphen type A (HA), Gumbel (EV1), Halphen type B (HB), Pearson type III (PIII), 

Gamma (G). 

Note that, in the SAD, this method should be used after the log-log plot method. Indeed, if the assumption 

H0 of the log-log method is rejected (distribution does not belongs to the class C of regularly varying 

distributions) FME method allows testing whether the distribution is exponential or not. 
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Figure 6: Mean excess function for exponential and sub-exponential distributions. 

 

The use of this diagram in the DSS is based on the slope of the MEF curve for the observations that 

exceed the median (50 % of the highest observed value of the sample). 

 

Simulation studies allow the determination of critical values of the slope corresponding to significance 

levels of 5 % and 1 %, to test the HYPOTHESIS H0: THE DATA FOLLOW A DISTRIBUTION OF 

THE CLASS E (i.e. THE SLOPE OF THE MEF IS EQUAL TO ZERO). These critical values are 

calculated according to the size N of the sample (30 ≤ N ≤ 200). Note that the decisions given by the 

DSS are based, by default, on the significance level 5 %.  

 

When the hypothesis H0 is accepted we suggest the use of the Exponential distribution (class E). 

However, when it is rejected at the significance level 5 %, we suggest the use of a distribution of the class 

D (HA, EV1, HB, PIII, G). Note that the critical values at the significance level 1 % are given for more 

flexibility and to allow the user to make possibly another decision than that suggested for the 

significance level of 5%. The zone of preference or rejection of the null hypothesis for the significance 

levels 1% and 5%, can be represented in a similar manner as for the Log-log method (Figure 5). 
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5. Hill's ratio plot [for the theoretical details c f. El Adlouni et al. 
2008] 
 

The Hill ratio is defined by 

( ) ( )
( ) ( )

1

1
log /

n

i ni
n n n

i n i ni

X x
a x

X x X x
=

=

Ι >
=

Ι >
∑

∑
 

where ( ) 1   if       

0   if      
i n

i n
i n

X x
X x

X x

>
Ι > =  <

. 

This method is based on the fact that na  is a consistent estimator of α  if the tail is regularly varying 

(Class C) with tail index α  (Hill, 1975). In the expression of the Hill ratio, nx  is chosen to be large such 

that ( ) 0nP X x> →  and ( )nnP X x> → ∞ , and Ι  is the indicator function. The standard Hill 

estimator, of the tail index, corresponds to the particular case where the observations are ordered 

( ) ( )1 nX X≤ ≤K  and ( )1nn kx X += , where nk  is an integer which tends to infinity as n  tends to infinity. 

In practice, one plots ( )n na x  as a function of nx  and looks for some stable region from which ( )n na x  

can be considered as an estimator of α . Figure 7, presents the Hill ratio plot for a sample generated from 

the regularly varying (a) and Exponential (b) distributions.  

 

 

Figure 7: Generalized Hill ratio plot for (a) regularly-varying and (b) sub-exponential distributions. 

 

This statistics is used in the DSS to confirm the suggested choice given by the first two diagrams (the 

distribution belongs to the class C, D or E). 
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- If the curve converges to a non-null constant value, the most adequate distribution belongs to the class 

C (regularly varying distribution). We suggest then the use of a distribution of the class C: Fréchet 

(EV2), Halphen type B Inverse (HIB), Log-Pearson type 3 ( LP3), Inverse Gamma (IG). 

 

- If the curve decreases to zero, the distribution belong to the Sub-exponential class (class D: Halphen 

type A, Gamma, Pearson type III, Halphen type B, Gumbel); and the Exponential class (class E: 

Exponential distribution).  

Note that (cf. section 3) to discriminate between the classes D and E, we suggest the use of the MEF 

method. 

 

6. Jackson Statistic [for the theoretical details c f. El Adlouni et al. 
2008] 
 

This method is presented by Beirlant et al. (2006) and is based on the Jackson statistic. It allows to test 

whether the sample is consistent with Pareto type distributions. Note that the distributions of the class C 

(regularly varying distribution) have asymptotically the same behaviour as that of the Generalized Pareto 

distribution. Originally the Jackson statistic (Jackson, 1967) was proposed as a goodness-of-fit statistic 

for testing exponential behaviour, and given the link between the Exponential and the Pareto distribution 

(if X  has a Pareto distribution the logarithmic transformation ( )logY X=  is exponentially distributed) 

this statistic is used to assess Pareto-type behaviour. The Jackson statistic is further modified by taking 

into account the second-order tail behaviour of a Pareto-type model. Beirlant et al. (2006) give the 

limiting distribution of this statistic with corrected bias version for finite size samples. The modified 

Jackson statistic converges to 2 for power tail type distribution and has an irregular behaviour for sub-

exponential or exponential distributions (Figure 8). In the DSS, the Jackson statistic is used to 

characterize distributions of the class C. Indeed, regularly varying distributions (class C) has 

asymptotically a power tail. 
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Figure 8: Modified Jackson statistic for (a) regularly varying and (b) sub-exponential distributions. 

 

 

In the DSS this method is considered as a confirmatory method for suggested decision based on the Log-

Log and the MEF.  So: 

- If the curve converges clearly and regularly to 2 (figure 8-a), the studied distribution belongs to the class 

C (regularly varying distribution). We suggest then, the use of: Fréchet (EV2), Halphen type IB (HIB), 

Log-Pearson type 3 (LP3), Inverse Gamma (IG); 

 

- If the curve presents some irregularities and do not converge to 2 (figure 8-b), than we suggest the sub-

exponential class (class D: Halphen type A, Gamma, Pearson type III, Halphen type B, Gumbel); or 

exponential (class E: Exponential distribution). 

 

Note that (cf. section 3) to discriminate between the classes D and E, we suggest the use of the MEF 

method. 

 

Remarque: 

Even if the modified Jackson statistic was developed to test Pareto type behaviour, it is used in the DSS to 

check if the of the studied distribution has similar tail as regularly varying distribution (class C). In deed, 

distributions of the class C have asymptotically Pareto type tail. In practice, the Generalized Pareto 

distribution (GPD) is used in the Peaks-over-threshold model (POT). However, the GPD is available in 

HYFRAN and can be used to fit any data sets that are independent, homogenous and stationary. 
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